For a memoryless two port active network the input-output characteristic is generally a nonlinear function, that can be approximated by a polynomial over some signal range as
(1)
If the input contains only one frequency component, the output
contains desired fundamental frequency component and harmonics of the fundamental frequency which are generally undesirable components. Whereas if
contains more that one frequency component, it will result in output components which are mathematical combinations of the frequency of the input signals called inter-modulation products, will be described in the later sections.
For most of the circuits, the first three terms in Eq.(1) are sufficient to characterize the system with good amount of accuracy. Hence the output of the system governed by the Eq.(1), due to is given by,
(2)
From Eq.(2), we can observe that output contains DC term, fundamenal and harmonic components even though the input has a single frequency component due to system’s nonlinearity. It also gives an idea how fundamental and harmonic gain terms are associated with signal amplitudes. This association of gain term with singal amplitude results in distortion. The more excursions in the signal amplitude, the more distortion in the output.
Harmonic Distortion
The ratio of the amplitude of the harmonic to its fundamental amplitude is called
order Harmonic Distortion, or it is the ratio of
harmonic power to the fundamental component power.
In general and
order are significant contributors for total harmonic distortion. Hence they are of much interest compared to others.
From Eq.(2), Order Harmonic Distortion(
) can be written as,
(3)
where and
are the amplitudes of fundamental and
harmonic components in the output.
If ,
(4)
The condition under which the above approximation is valid is called low distortion condition and given by
Similarly Order HarmonicDistortion(
) can be written as,
(5)
It can also be approximated as
(6)
From Eq.(4) and Eq.(6), we can observe that and
. In dB sense for every 1dB increase in input,
increases 1dB and
increases by 2dB.
Total Harmonics Distortion
The ratio of sum of the harmonics power to the fundamental power is called Total Harmonic distortion(THD).
(7)
Inter-Modulation Distortion (IMD)
If the input containing two or more frequency components are mixed together, it will result in the output frequency components that are mathematical combination of the frequency components in the input. These output frequency components are called inter-modulation products.
Let,
where,
and
.
The output of a system represented by Eq.(1)., with the above input, is
(8)
From the above Equations we can observe that second order terms does not contribute to fundamental gain but it will be there from third order terms.
1dB Compression Point (P1dB)
It is a measure of linearity. The point at which the actual gain is reduced by 1dB from the small signal linear gain is called 1dB compression point. Beyond P1dB, the output power remains almost constant even as input power increases.
From Eq.1, the output due to the fundamental component can be written as,
(9)
The gain of fundamental component deviates from small signal gain due to the term . Gain expands if
, or compresses if
. For most practical devices
and gain compresses as the amplitude of the input signal increases. The point at which the output power or gain compresses by 1dB is called 1dB compression point(
).
(10)
The gain compression is due to odd order nonlinearities, current and/or voltage limiting. When the gain compression is caused by the odd-order nonlinearities in the transfer functions of the devices in the circuit, the gain decreases more linearly with increase in input signal power. Whereas with current or voltage limiting the gain drops abruptly.
3rd Order Intercept Point
IP3 is a figure-of-merit for the linearity of a two port network. The point at which the extrapolated curves of third order distortion products equal the desired linear, uncompressed output power
is called Third Order Intercept Point(IP3). If it is referred to input it is called Third Order Input Intercept Point(IIP3).
(11)
From Eq(10), 1dB compression point and IP3 are related as
(12)
in dB sense,
(13)
IP3 determines the amount of IMD produced in the system when subjected to high level interference.
Cross Modulation
Consider a weak signal and a strong signal
, whose amplitude is modulated as
, passing through the system defined by Eq.(1).
Gain of the fundamental component at frequency from the Eq.1.4., is given as
(14)
Therefore the fundamental gain due to is given by,
(15)
If , then the second term in the gain expression becomes dominant and is modulated by the strong signal(
). It result in transfer of amplitude modulation of the strong signal to the amplitude of the weak signal.This transfer of modulation from strong signal to weak signal is called cross modulation. The fundamental gain is a function of strong signal modulation index, modulation amplitude and modulation frequency.